CONNECTIONS OF RESISTANCES

Connection in series

$R s=R I+R 2+\cdots R n$

Connection in parallel

$\frac{1}{R p}=\frac{1}{R 1}+\frac{1}{R 2} \cdots+\frac{1}{R n} R p=\frac{R 1 \times R 2}{R 1+R 2}$

Connection of equal resistances					
	Connection in series	Connection in parallel	Example of 2 resistances 52.9 U=230V		
	Resistance	$\mathrm{Rs}=\mathrm{n} \mathrm{R1}$	$\mathrm{Rp}=\frac{\mathrm{R} 1}{\mathrm{n}}$	$\mathrm{Rs}=2 \times 52.9=105.8$	

Power at different voltages
E.g. 400 V instead of 230 V

$$
P_{1}=\frac{U_{1}{ }^{2}}{R_{1}} \quad P_{2}=\frac{U_{2}{ }^{2}}{R_{1}} ; \frac{P_{1}}{P_{2}}=\frac{U_{1}{ }^{2}}{U_{2}{ }^{2}} \quad P_{2}=\frac{U_{2}{ }^{2}}{U_{1}{ }^{2}} \times P_{1} \quad P_{2}=\frac{400^{2}}{230^{2}} \times P_{1}=3 \times P_{1}
$$

Star and delta connections with 3-phase systems. Phases equally loaded

